大孔强酸性阳离子交换树脂软化水树脂
大孔强酸性阳离子交换树脂软化水树脂 专业生产:阴阳离子交换树脂 大孔吸附树脂 软化水树脂 混床MB树脂 18兆欧超纯水抛光树脂 线切割慢走丝树脂 污水脱色树脂 电镀废水除镍除铬树脂 除铁、除铜、除磷、除硼、除坲除重金属树脂,酸回收树脂,鳌合树脂 食品级树脂 提矾树脂 吸金树脂 提银树脂 强酸强碱弱酸弱碱四大类几十种型号有:001×7、001×8、732、717、201×7、201×4、D001、D201、D301、D113、D101、H103、D403、D408等
【产品技术标准】
指标名称
D001 H/Na
D001 FC H/Na
D001 SC H/Na
D001MB H/Na D001 TR
全交换容量mmol/g≥
4.80/4.35
体积交换容量mmol/ml≥
1.60/1.70
含水量%
50-60/45-55
湿视密度g/ml
0.74-0.80/0.75-0.85
湿真密度g/ml
1.16-1.24/1.25-1.28
粒度%
(0.315-1.25mm)≥95
有效粒径mm
0.40-0.70
均一系数≤1.60
磨后圆球率% ≥95
外观
浅棕色或灰褐色不透明球状颗粒
出厂型式
Na
【用途】
本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或MH4-OH混床系统),还能用于废水处理,回收重金属;氨基酸回收;也可作催化剂。
大孔强酸性阳离子交换树脂软化水树脂 混床离子树脂混合状态对出水水质影响 混床中阴、阳树脂分离困难、混合也不容易,必然会影响到混床出水水质和周期制水量,此时采用反常规均粒津达混床离子树脂,将其重新混合再投入运行,提高产水质量。
混床的中部、上部所取的树脂样中阴、阳树脂的比例分别为2. 96∶1和3. 88∶1。结果表明,混床的上层阴树脂多、下层阳树脂多。
混床为新的阴、阳树脂时,由于它们带有正、负电荷,非常容易均匀地混合,是真正的理论意义上的混床。但是根据测试结果和一些水处理专家的研究结果都证明事实并不是如此。随着阴、阳树脂所带有的正、负电荷的逐步消失,阴、阳树脂的粒度、湿真密度等物理性能成为影响树脂混合的主要因素,研究表明,树脂的粒径、湿真密度愈大则其沉降速度也愈大。中国电厂化学网K H J‑H5He!Y
当树脂的沉降速度比达到3~4倍以上时,才能得到较为*的分离;当沉降速度比小于3时,分离效果差;小于1时则*不能正常分离。
混床树脂不同混合状况对出水水质的影响
上层为津达C150树脂、下层为强碱阴树脂混合方式的离子交换机理为:
上层 RH+ NaHSiO3= RNa+ H2SiO3
下层 ROH+ H2SiO3= RHSiO3+ H2O
上层生成H2SiO3和下层生成H2O是难电离的弱酸和水,因此,混床的离子交换反应可顺利进行。
上层为津达强碱阴树脂、下层为强酸阳树脂混合方式的离子交换机理为:
上层 ROH+ NaHSiO3= RHSiO3+ NaOH
下层 RH+ NaHSiO3= RNa+ H2SiO3
上层生成的NaOH是强碱,使得该反应实际上不进行,所以, NaHSiO3会漏过到达下层。下层的RH与NaHSiO3生H2SiO3,因此,可能会使出水呈pH值偏低,且硅含量偏高。
混床中阴、阳树脂分离困难,混合也很不容易。因此,再生时存在交叉污染,运行时存在混合不匀,影响混床出水水质和周期制水量。采用反常规均粒混床树脂,可使两种树脂的分层问题和分离问题得到较好的解决。中国电厂化学网3A"v)F9}P
当混床运行还不到失效时间而出水水质下降时,可采用将混床树脂重新混合后再投运的方法。
防止津达离子交换树脂受污染措施 上一篇:津达软化树脂分解概述
本实用新型公开了一种纯水制备装置,包括原水箱、初级过滤装置和纯水箱,原水箱的出口连接有初级过滤装置,初级过滤装置与纯水箱之间依次设有阳离子树脂过滤器、阴离子树脂过滤器和混合离子树脂过滤器,混合离子过滤器与纯水箱之间连接有电导率检测仪和一级回流管道本实用新型的有益效果:通过活性炭初步吸附水中的有机物、胶体及部分离子,然后通过阳离子树脂过滤器、阴离子树脂过滤器和混合离子树脂过滤器逐步去除水中的阴阳离子,在管路中连接电导率检测仪可以适时根据检测情况,